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Abstract—This paper introduces a discrete wheel-switching
chaotic system (DWSCS). Changing the controlling sequence of
the wheel switch allows DWSCS to generate a large number of new
chaotic sequences from a set of existing chaotic maps (seed maps).
Simulations and analysis demonstrate the DWSCS’s character-
istics and chaotic behaviors. An FPGA design of DWSCS shows
its effectiveness in hardware implementation. We also propose a
pseudo-random number generator using DWSCS whose excellent
performance has been shown in experiments and comparisons.

Index Terms—Chaotic system, FPGA, pseudo-random number
generator.

I. INTRODUCTION

O VER THE PAST decades, many research interests have
been put in the study of nonlinear dynamical systems

[1]–[5]. Chaotic behaviors have been observed in a variety
of systems including electrical circuits, lasers, oscillating
chemical reactions, and fluid dynamics. Applications of chaos
in economics [6], finance [7] and engineering [8]–[13] offer
several opportunities of improvement. Especially, in electrical
engineering, the chaotic system has been used in commu-
nications [14]–[16], random number generators [17], and
encryption systems [18]–[22].
Chaotic systems are well-known for their random-like behav-

iors and high sensitivity to initial values. For a chaotic system,
any two close sets of initial values generate random-like tra-
jectories which diverge markedly. However, little information
of the system may be sufficient to deduce the distribution of its
output states [23]. For example, the artificial neural network has
been demonstrated to identify chaotic systems [24], [25]. Other
efforts are found in estimating parameters and initial values in
existing chaotic maps [26]–[28]. These weaknesses has great
impact of its applications in pseudo-random generators and en-
cryption systems. For the chaos-based pseudo-random gener-
ator, its performance mainly depends on the chaotic properties
of utilized chaotic maps/systems. Some existing chaotic maps
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can be attacked by some methods. This means that the corre-
sponding pseudo-random generator is not desired. Designing
good chaotic systems and generators becomes necessary.
For image encryption, chaotic ciphers for digital data encryp-

tion are claimed to be secure, but many of them are actually not
[29]. The reason is that the utilized chaotic system is easy to be
attacked. Due to a number of tools available for identifying and
estimating chaotic systems, an attacker might significantly re-
duce the complexity of finding the encryption keys of a chaos
based cipher. Recently, researches in cryptanalysis have already
found approaches to break analog chaos-based secure commu-
nications [30] and chaotic ciphers [31], [32]. Many attacks rely
on the knowledge of the chaotic system, i.e. the chaotic map
and encryption mechanism. A good encryption method, how-
ever, should not rely on its structures [33]. In order to solve
this dilemma, many high dimensional (three dimensional and
four dimensional) chaotic systems were developed [34], [35].
Thoughmore complicated chaotic systems sets more difficulties
for attackers, they also asks for much more computational costs.
Meanwhile, the security of a such high dimensional chaotic
system might lose its invulnerability when faster computers are
available. Hence, designing new chaotic systems with simple
structures and good performance is vital to the chaos-based ci-
phers.
In this paper, we introduce a new chaotic system using a

wheel switch. The system uses a set of predetermined chaotic
maps as seeds to generate new chaotic sequences according
to the controlling sequence of the wheel switch. Changing the
controlling sequence yields different new chaotic sequences.
The proposed system provides an alternative solution to the
dilemma encountered in chaotic ciphers. It ensures security
using the controlling sequence, which is unknown to attackers.
We implements the system in the FPGA (field-programmable
gate array) platform. The simulation results show that the
generated chaotic sequences have more advanced structures
and complicated chaotic behaviors than its seed chaotic maps.
To investigate its applications, this paper also proposes a new
pseudo-random generator. Its application for image encryption
has been discussed in our previous work in [36].
The remainder of the paper is organized as follows: Section II

reviews three traditional discrete chaoticmaps; Section III intro-
duces the discrete wheel-switching chaotic system (DWSCS);
Section IV provides discussions of its chaotic property and a
case study of its behaviors; Section V shows the FPGA de-
sign of a specific wheel-switching chaotic system. To inves-
tigate the applications of DWSCS, we use it for designing a
pseudo-random number generator in Section VI. Finally, Sec-
tion VII reaches a conclusion and discusses our future direc-
tions.
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Fig. 1. The bifurcation diagrams and Lyapunov Exponent of the (a) Logistic
map ; (b) Skew Tent map ( , and ); and (c) Gauss
map ( and ).

II. BACKGROUND

We briefly review three chaotic maps that will be later used.
For more details, one may refer to literatures [2], [37]–[39].

A. Logistic Map

The Logistic map is a polynomial mapping of degree two
introduced by a biologist Robert May in 1976 [2]. It is defined
in (1), where and represents the population at year
and represents the initial population at year 0; is a positive
number and represents the combined rate for reproduction and
starvation [37].

(1)

The bifurcation diagram and Lyapunov Exponent of the Lo-
gistic map are given in Fig. 1(a). Its chaotic range is
(approximately). This map is frequently used as an example of
how complex chaotic behaviors can arise from a simple non-
linear dynamic equation.

B. Tent Map

Mathematically, the Skew Tent map is a real value map
defined by (2), where is the indicator function that is of value
1 for and of value 0 otherwise; parameter controls the
height of the map; and parameter controls the center
of the map. When , it becomes a classic Tent map with
chaotic behaviors for [38]. The bifurcation diagram
and Lyapunov Exponent of the Skew Tent map are given in Fig.
1(b).

(2)

C. Gauss Map

The Gauss map, also known as Gaussian map [39] or mouse
map, is named after Carl Friedrich Gauss. It is a nonlinear iter-
ated map defined by the Gaussian function in (3), where and
are parameters controlling the width and height of the Gaussian
curve, respectively.

(3)

Fig. 2. The sketch diagram of DWSCS.

Due to two associated parameters, the Gauss map shows com-
plicated dynamics. It includes all features that appear in the Lo-
gistic map and also contains its own features such as period un-
doublings and bistability [39]. Its chaotic behaviors are deter-
mined by parameters , . The bifurcation
diagram and Lyapunov Exponent of the Gauss map are given in
Fig. 1(c).

III. DISCRETE WHEEL-SWITCHING CHAOTIC SYSTEM

The new Discrete Wheel-Switching Chaotic System
(DWSCS) consists of a controllable wheel switch and a
set of normalized seed chaotic maps. Fig. 2 illustrates the
DWSCS’s sketch diagram [36]. In particular, DWSCS utilizes
the wheel switch to select one of the normalized chaotic maps
in each iteration. The DWSCS’s output sequence is iteratively
defined by (4), where is the th input of DWSCS ; is
the th element in the controlling sequence ; and denotes
the th normalized seed chaotic function.

(4)

As one may notice, DWSCS is fully determined by: (1) the
set of normalized seed chaotic maps, i.e. ;
and (2) the controlling sequence of the wheel switch, i.e.

with . Although
the seed chaotic maps can be chosen from the continuous
chaotic functions, this paper focuses on the discrete chaotic
functions similar to those presented in Section II.
The process for constructing a DWSCS can be done in three

steps, namely: 1) initialization; 2) normalization; and 3) gener-
ation. Details of these three steps and the chaotic nature of a
DWSCS are discussed below.

A. Initialization

Because these seed chaotic maps may be mismatched
in dimensions, parameters and domains, the objective of
the initialization stage is to coordinate the seed chaotic
maps, , with a set of map parameters,

, where and are the th seed
chaotic function and its parameter set, respectively.
There are two types of variables in the proposed DWSCS,

namely the local and global variables. The local variable(s) will
be used only within the associated seed maps. The global vari-
able(s) will be used in throughout DWSCS in all iterations and
passed from one seed map to another. It is worthy noting that
DWSCS has at least one global variable to be passed through
all seed chaotic maps.
DWSCS requires its parameters selected in the way to ensure

that all seed maps have excellent chaotic behaviors. In this way,
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even for the worst case of a controlling sequence, i.e. this se-
quence is not random-like at all, we still ensure a DWSCS is
chaotic.

B. Normalization

The objective of the normalization stage is to ensure the do-
main and range of an initial seed map are both normalized into
the unit interval [0,1]. In this way, no matter how we cascade
these seed maps, there is no mismatching between one map’s
range and its succeeder’s domain.
Without loss of generality, let be a seed chaotic

map with a bounded domain and a bounded
range , with real , and .
Our aim is to find two normalization transforms for the
’s domain and for the ’s range, such that the resulting
normalized function (5) has both its domain and range in [0,1],

(5)

Though one may find and transforms in different
means, we adopt the widely used shifting and scaling strategy.
In particular, we find these two transforms by simply applying
shifting and scaling functions as shown in (6) and (7).

(6)

(7)

In this way, we make sure that each seed map has been prop-
erly normalized to the unit interval. These normalized maps

then can be safely cascaded without
any conflict.

C. Generation

As described in Fig. 2, at each iteration, DWSCS picks one
normalized seed map , according to the controlling se-
quence at the th moment. This implies that our controlling se-
quence has the same length as the output sequence. To improve
efficiency, we actually repeatedly use a controlling sequence in
a circular way. In other words, once we reach the tail of our con-
trolling sequence, we restart at its head.
Let be a base controlling sequence with a length of , we

expand to a length controlling sequence by
reusing in a periodic way, as defined by.

(8)

where is the th controlling element in used in DWSCS,
while is the th controlling element in .
For example, if and , then

. The normalized seed map will be
selected in the 4th iteration. In this way, with a finite length con-
trolling sequence we are able to produce an arbitrary length
of the controlling sequence and a discrete chaotic sequence
.

D. Example

Suppose we want to construct a DWSCS by using the three
mentioned chaotic maps: the Logistic map in (1), the Skew Tent
map in (2), and the Gauss map in (3). In other words, we have
these three seed maps as , and .

Fig. 3. Three examples of the normalized seed maps.

Because these seed maps are of one-dimensional map, our
global variable for the resulting DWSCS is simply the variable
in the first dimension of these seed maps. Next, we choose valid
parameters of each seed map which ensure chaotic behaviors of
the corresponding map. For instance, we choose for the
Logistic map, and for the Skew Tent map, and

and for the Gauss map. As a result, we have

(9)

It is noticeable that and are already in range of [0,1]
for and thus they are already normalized. How-
ever, is unlike the previous two maps. Though is valid
for an arbitrary real , we could only consider a fixed domain,
say . As a result, we know its corresponding
range is . According to the normaliza-
tion scheme introduced in (6) and (7), we have the normalized
transforms for the domain and range of as given in (10) and
(11), respectively.

(10)

(11)

Finally, we obtain three normalized maps as follows

(12)

As one can see in Fig. 3, all have
ranges and domains in [0,1]. We are nowworry-free to construct
a DWSCS with respect to an arbitrary controlling sequence .

IV. NEW CHAOTIC MAPS GENERATED BY DWSCS

In this section, we focus on the chaotic behaviors of a
DWSCS. In particular, we first show that a DWSCS is chaotic
as long as all of its seed maps are chaotic. We then investigate
the chaotic behaviors of a DWSCS via a series of bifurcation
diagrams of a DWSCS with different controlling sequences.
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A. DWSCS is Chaotic

It is known that “no universally accepted mathematical
definition of the term ‘chaos’ exists” [40]–[42]. We adopt a
widely accepted working definition given in [43], which defines
a chaotic system by using the Lyapunov exponent: “Any system
containing at least one positive Lyapunov exponent is defined
to be chaotic, with the magnitude of the exponent reflecting the
time scale on which system dynamics become unpredictable.”
The Lyapunov Exponents (LE) can be defined as follows.
Definition 1: The Lyapunov exponent for a discrete time

system is the degree of divergence for the
two trajectories starting at very close initial points as time goes
to infinity. [40]
Mathematically, the LE of system , denoted as , can

be written as follows [40].

(13)

where denotes a very small positive quantity close to zero.
Intuitively, LE of a system reflects the average exponential

rates of divergence of convergence of nearby orbits in space.
When LE , it means that two trajectories starting at very
close initial points diverge as time goes to infinity and it is a
chaotic system. It is also well known that when is a weakly
differentiable function, then (13) has the alternative form

(14)

It is demonstrable that a DWSCS system with all chaotic seed
maps is also a chaotic system regardless of its controlling se-
quence. We scratch this demonstration by using mathematical
induction. Let us start with a DWSCS with a base controlling
sequence of length . It is clear that in this case the
proposed DWSCS degrades to one of its chaotic seed maps and
thus it is chaotic.
Now let us examine a DWSCS with a base controlling se-

quence of length . It is not difficult to see that the resulting
DWSCS is equivalent to a system cascading two chaotic seed
maps allowing duplicates.
Let be such a DWSCS with both chaotic

seed maps and weakly differentiable. When two seed
chaotic maps and are identical, is also identical
to the map , and thus it is chaotic. When these two seed
maps are distinctive, we have

(15)

After several steps of derivations as given in (16), one can see
LE of the resulting DWSCS, i.e. , is greater than zero be-
cause and .

(16)

Assume that a DWSCS with a controlling sequence of length
is chaotic. It is not difficult to see that a DWSCS with

a controlling sequence of length is also chaotic. As
we showed in the case , a DWSCS with length
controlling sequence is also equivalent to a system cascading

chaotic seed maps allowing duplicates. Considering the
first chaotic seed maps as a whole, the DWSCS with

length controlling sequence is nothing but the cascading
of 1 new chaotic map and the chaotic system composed of
chaotic seed maps. Because both of these two parts are chaotic,
the resulting DWSCS is also chaotic.
In this way, we show that a DWSCS with an arbitrary con-

trolling sequence is also chaotic.

B. A Case Study of DWSCS Behaviors

In this section, we study the behaviors of a DWSCSwith three
seed maps, namely the Logistic, Skew Tent, and Gauss maps.
An advantage of using these concrete maps is that we are now
able to easily illustrate the DWSCS’s behaviors.
To show different behaviors of a DWSCS, we use the method

of bifurcation diagram [44], which depicts a system’s behavior
with respect to its continuous parameter. Though the only pa-
rameter we have in a DWSCS is its discrete controlling se-
quence, we are still able to plot the behavior of a DWSCS by
imposing a continuous system parameter. Specifically, we de-
fine a system parameter , and represent the parameter in the
Logistic map, parameter in the Tent map and parameter in
the Gauss map as follows

(17)

In other words, we do not fix the parameters of the seed maps,
but change them accordingly. It is worthwhile noting that we
do this chaining step only to pretend a continuous DWSCS pa-
rameter, so that we can plot the system behaviors via bifurcation
diagrams.
In summary, we observe several different types of behaviors

of DWSCS according to s: DWSCS
1) with shift-equivalent s has similar dynamic behaviors.
2) with shift-inequivalent s has dissimilar dynamic behav-
iors.

3) with random s has more dynamic behaviors as the ’s
length increases.

First, we say two controlling sequences and are shift-
equivalent if and only if we have some integers and , such
that

(18)

for all controlling elements in or . For example,
and is shift-equivalent, because there

exist and to make (18) hold. However,
is neither a shift-equivalent sequence of nor .

1) DWSCS With Shift-Equivalent s: Fig. 4 shows the re-
sults of shift-equivalent s of length 3. In particular, each row in
Fig. 4 shows the bifurcation diagrams and Lyapunov Exponent
plots of the DWSCS with shift-equivalent s. It is noticeable
that both bifurcation diagrams and Lyapunov Exponent plots of
these shift-equivalent s are quite similar to each other. How-
ever, s used in different rows are shift-inequivalent and lead
DWSCS to different dynamic behaviors.
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Fig. 4. DWSCS with shift-equivalent .

2) DWSCS With Shift-Inequivalent s: Fig. 5 shows the
bifurcation diagrams and Lyapunov Exponent plots of the
DWSCS with shift-inequivalent s of length 3. As one can
see, neither of two maps listed in Fig. 5 lead to similar dynamic
behaviors. These results are not beyond our expectations. This
is because we use a controlling sequence to repeatedly generate
the outputs. When two controlling sequences are shift-equiva-
lent, one may regard these two DWSCSs as an identical system
but with different initial values. For example, let one DWSCS-I
of and another DWSCS-II of
both start with an initial value . According to (18), we have

for all . This means we will generate the
identical output of DWSCS-I by feeding a new initial value

in DWSCS-II.
3) DWSCS With Random s: Fig. 6 shows bifurcation

diagrams of DWSCS with randomly generated s of different
lengths. As one may see, as the length of the randomly gener-
ated increases, behaviors of a resulting DWSCS are more
dynamic. One may notice that the bifurcation diagram of a
DWSCS tends to a limit case as the length increases. In order
to compare the bifurcation diagram of a DWSCS with a long ,
we put the bifurcation diagrams of chaotic seed maps together
in Fig. 6(d). It is obvious that the resulting DWSCS with a long
has a much wider dynamic range than the superposition of

all three chaotic seed maps. This simply means that a DWSCS
is effective to introduce additional dynamic behaviors.

V. FPGA IMPLEMENTATION OF DWSCS

This section presents an FPGA implementation of DWSCS in
the VHDL language. Again, we select the Logistic, Skew Tent,

Fig. 5. DWSCS with shift-inequivalent .

Fig. 6. DWSCS with random generated s of length: (a) 81, (b) 243, (c) 2187,
and (d) 2187 (Red: Logistic map; Green: Tent map; Yellow: Gauss map; Blue:
DWSCS), respectively.

and Gauss maps as seed maps, but one may choose other chaotic
maps instead.

A. FPGA Design

As shown in Fig. 7(a), the DWSCS circuit consists of the
wheel switch and three normalized chaotic map (seed map)
units, including the Logistic, Gauss, and Tent map units. and
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Fig. 7. The FPGA implementation of DWSCS: (a) The schematic diagram; (b)
the FPGA structure.

are the input and output of DWSCS. The wheel switch
is used to select one of three seed maps in each iteration. The
Logistic map unit is composed of the multiplication and addi-
tion circuits. The Tent map circuit contains the multiplication,
addition and switch units. Its switch unit chooses different
sub-circuits to produce the output according to the com-
parison of and . The Gauss map unit is slightly different.
In particular, we adopt the Taylor series to approximate as
defined by (3).

(19)

where,

Then, we can calculate , recursively. This significantly re-
duces computational cost. Theoretically, the Taylor series could
have an infinite length, . We set to balance the tradeoff
between the execution time and approximation accuracy. No-
tice that one should normalize the Gauss map properly as we
previously discussed in Section III-B.

B. Simulation Results

The FPGA implementation of DWSCS in the VHDL lan-
guage is done with the Altium Designer software. The FPGA
scheme structure is shown in Fig. 7(b). In this design, parame-
ters of three seed maps , and are
represented by 68 bits. Combining two binary sequences and

together can generate the control sequence . Here, all pa-
rameters are extended to the range of [0,4] based on (17). Fig. 8
plots the first 100 output points of two chaotic sequences that are

Fig. 8. The FPGA simulation results of DWSCSwith the base control sequence
of length (a) 3 and (b) 100, respectively.

TABLE I
15 SUBTESTS IN THE NIST SP 800-22 TEST

generated by the circuit in Fig. 7(b) under different lengths of
the base control sequence . These demonstrate that DWSCS
is easy to implement in hardware.

VI. DWSCS-BASED PSEUDO-RANDOM NUMBER GENERATOR

Random numbers have an essential role in simulation and
cryptography. Because a perfect random number is gener-
ated only by the nondeterministic physical phenomena, the
pseudo-random numbers are often be used to approximate
it in the real applications. Due to the close relationship be-
tween chaotic sequences and pseudo-random numbers, chaotic
systems are the ideal candidates for the pseudo-random
number generator (PRNG) [29]. This section proposes
a new DWSCS-based pseudo-random number generator
(DWSCS-PRNG) and evaluates its performance.

A. DWSCS-PRNG

The definition of DWSCS-PRNG is shown in (20).

(20)

where, is the pseudo-random number se-
quence, is the output chaotic sequence
of DWSCS in range of [0,1], is the floor operator to obtain
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TABLE II
THE COMPARISON RESULTS OF THE NIST SP 800-22 TEST

the largest integer toward zero, and mod is the modula opera-
tion.

B. Statistical Analysis

To evaluate the quality of a DWSCS-PRNG, a convincing
way is to perform the NIST SP 800-22 test published by the
Information Technology Laboratory in National Institute of
Standards and Technology in USA [45]. This test mainly as-
sesses the quality of hardware or software based pseudo-random
number generators in cryptographic applications which require
a stronger randomness than other applications. In the software
package of the NIST SP 800-22 test,1 there are 15 subtests for
evaluating different aspects of the random binary sequence.
Table I provides the detail descriptions of these 15 tests.
In our experiment, 100 binary sequences with a size of

1 000 000 bits are generated by DWSCS-PRNG. We also com-
pare DWSCS-PRNG with five existing methods in [46], [47].
They belong to a family of chaotic iteration (CI) based random
generators proposed by Jacques Bahi. CI is a good iterative tool
satisfying the topological chaotic property. It can be utilized to
generate unpredictable pseudo-random numbers.
Table II shows the comparison results. As can be seen, two

CI-based generators fail in all 15 subtests of the NIST SP 800-22
test while DWSCS-PRNG passes all of them. This proves the
high quality of DWSCS-PRNG.

C. Security Analysis

Because DWSCS-PRNG has potential applications in the se-
curity fields, here we evaluate its security performance in terms
of the brute-force attack, sensitivity test, and linear complexity.
1) Brute-Force Attack: The brute-force attack is a common

attack in which one intends to guess the security key of an al-
gorithm by exhaustively searching its key space. To withstand
the brute-force attack, the algorithm should have a sufficiently
large key space.

1TheC code is located in http://csrc.nist.gov/groups/ST/toolkit/rng/documen-
tation_software.html.

Fig. 9. Sensitivity and Linear complexity tests: (a) The sensitivity test with a
tiny change in parameter and initial value , respectively; (b)
The linear complexity results.

The key space of DWSCS-PRNG is dependent on the length
of the controlling sequence and the number of chaotic

seed maps. Its key space is , or equivalently bits.
For example, if DWSCS has 4 seed maps and its controlling se-
quence has a length of , its key space is , which is
known to be large enough to resist the brute-force attack. Fur-
thermore, one may include parameters of DWSCS, such as pa-
rameters and initial conditions of all seed maps in DWSCS, to
further increase the key space of DWSCS-PRNG.
2) Sensitivity Test: A PSNG should be sensitive to its initial

conditions. This ensures that any tiny change of the conditions
yields a completely different random sequence. Here, we per-
form the sensitivity test to DWSCS-PRNG.
Fig. 9(a) shows the results of the sensitivity test of DWSCS-

PRNG to its initial value and parameter, respectively. The
axis indicates the length of the sequence. The axis is the
variance ratio defined in (21).

(21)

where and are two binary sequences with the length of
generated byDWSCS-PRNG and is a function to obtain
the Hamming distance between two binary sequences.
From the results in Fig. 9(a), the variance ratio is close to or

even larger than 0.5 after several iterations. This indicates that a
tiny variation in the parameter or initial value(s) leads
to a totally different pseudo-random number sequence. Thus,
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DWSCS-PRNG is extremely sensitive to its initial value(s) and
parameter(s).
3) Linear Complexity: Generally, attackers intend to utilize

the linear feedback shift register (LFSR) to re-generate and an-
alyze a pseudo-random sequence. To withstand this attack, a
PRNG should ensure the attackers’ difficulty of designing this
LFSR. The linear complexity is the size in bits of LFSR and
is introduced to evaluate the level of this design difficulty. the
larger the value of the linear complexity is, the more difficulty
of the LFSR design the attacker has. Fig. 9(b) plots the linear
complexity values of a pseudo-random number sequence with
length of 2000 bits which is generated byDWSCS-PRNG.Here,
we use the Berlekamp-Massey algorithm [48] to calculate the
values of the linear complexity. As one may observe, the curve
of the linear complexity is extremely close to the ideal line

. This demonstrates that the DWSCS-PRNG has a high
linear complexity. It is a sign of high security level of a PRNG
[49].

VII. CONCLUSION

This paper has introduced a new wheel-switching chaotic
system (DWSCS). Theoretically, any set of chaotic maps (called
seed maps) can be used in the proposed DWSCS. It provides an
easy and inexpensive way to produce new chaotic maps from
existing chaotic maps. Using different parameters or seed maps,
DWSCS is able to generate a large number of new chaotic maps.
Even if the seed maps are determined and fixed, DWSCS can
still produce distinctive chaotic maps using different wheel-
switching control sequences. The newly generated maps may
have longer periodic orbits than the corresponding seed maps.
We have demonstrated that using only three simple seed maps
allows DWSCS to generate new complicated and unpredictable
chaotic maps.
To demonstrate that DWSCS is easy to implement in hard-

ware, an FPGA design of DWSCS has been proposed. To
investigate its applications, DWSCS has been used to design
a pseudo-random number generator and an image security
system. Simulations and analysis have proved that DWSCS
shows excellent performance in both applications. The new
pseudo-random number generator has passed all statistical tests
in the NIST testing package.
Because different chaotic maps have different nonchaotic re-

gions, an initial value may lead to a chaotic trajectory in one
seed map but a periodic trajectory in another seed map. This is
the reason why linking different seed maps properly improves
the randomness of a trajectory. Alternatively, it is clear that
changing map parameters, e.g. in a Logistic map, may also
lead to different nonchaotic regions. This is one of our future
directions to explore.
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